

Outline

- History
- Mark Weiser's vision
- Principles according to Weiser
- Building blocks of ubiquitous computing
- Dangers
- Art or science? Or both?
- Conclusion

Once upon a time in a galaxy far, far away...

- Mainframes dominated the computing scene: computers were BIG things
 - Multi-user systems
 - Dumb consoles for end-user access
- Dedicated places for computers, "computer room", "mainframe room", "control room", etc.

Once upon a time in a galaxy far, far away...

- Computers were not for everyone:
 - Operating the computers required highly trained personnel
 - Human-computer interfacing on computer's terms: lack of userfriendliness
 - Computers were VERY expensive, thus out of reach of the ordinary person

Developments from the past to present 1/3

- Appearance of the **personal** computer (PC)
- Computational power has grown dramatically
- Computers have become much smaller, small enough to carry them with you
- Improved network technologies: wired, wireless bandwidth have increased

Developments from the past to present 2/3

- Client-server to peer-to-peer
 - Wireless peer-to-peer means not having to rely on existing infrastructure, allows ad-hoc networking
- User interfaces have gotten much better
- From text mode UIs to mouse-operated windowing systems and even more exotic interfaces

Developments from the past to present 3/3

- Computing devices are appearing in new places:
 - Refrigerators, ovens, coffee machines
 - Cars
 - Washing machines
 - Vacuum cleaners
 - Shoes (e.g. Adidas)

The big trend

Computation is becoming ubiquitous.
Computing devices have started to pervade our lives.

Mark Weiser (1952-1999)

- Weiser's seminal papers started the field of ubiquitous computing
- Chief scientist at Xerox Palo Alto Research Center (PARC)
- "...highest ideal is to make a computer so imbedded, so fitting, so natural, that we use it without even thinking about it" (Weiser)

Weiser on ubiquitous computing

"Ubiquitous computing names the third wave in computing, just now beginning. First were **mainframes**, each shared by lots of people. Now we are in the **personal computing** era, person and machine staring uneasily at each other across the desktop. Next comes **ubiquitous computing**, or the age of calm technology, when technology recedes into the background of our lives." (Weiser, emphasis added)

Principles of ubiquitous computing

- "The purpose of a computer is to help you do something else."
- "The best computer is a quiet, invisible servant."
- "The more you can do by intuition the smarter you are; the computer should extend your unconscious."
- "Technology should create calm."
 - Calm technology is "that which informs but doesn't demand our focus or attention" (Weiser, Brown)

Example of calm technology

- "Dangling string" by Natalie Jeremijenko
- 8-foot (2.4 m) piece of plastic spaghetti attached to an electrical motor, hanging from the ceiling
- Weiser, Brown: Designing Calm Technology, Xerox PARC, 1995.

The dangling string

- The motor makes the string whirl based on network traffic intensity:
 - Aural cues don't need to look at the string, you can hear it
 - Visual cues don't need to hear the whirling sound, you can see it

Zen of dangling string

- The dangling string is embedded into the environment
- Does not require constant attention
- Has a purpose (easily check amount of network traffic)

What makes them tick?

How are such ubiquitous computing systems made?
What is required for creating such systems?

High-level view of building blocks 1

- Human-computer interface
 - Human ↔ computer
- Computer-computer interface
 - Computer ↔ computer
- Software support
 - The glue which binds all together
 - "The mind"

High-level view of building blocks 2

- Hardware
 - Environment ↔ computer
 - "The body"
- "Omni"
 - Concepts which apply (almost)
 everywhere at all times, regardless of
 the application domain
 - Privacy, security, power efficiency, etc.

Graphical view of the building blocks

Inside the building blocks... 1/3

- Human-computer interface
 - Human-computer interaction
 - Multimodal interfaces, tangible interfaces
 - Context awareness, context adaptation
 - Personalization
 - Augmented reality
- Computer-computer interface
 - Distributed computing
 - Peer to peer, ad-hoc networking, ...

Inside the building blocks... 2/3

Software support

 Adaptation, reasoning, autonomy, interpreted languages, data collection, data mining, object technologies, virtual machines, ...

Hardware

 Batteries, sensors, processors, displays, memories, ...

Inside the building blocks... 3/3

- "Omni"
 - Security, privacy, power efficiency, architectures, algorithms, ...
 - Automation!
 - Common sense
- And so on, and so on, and so on, and so on

Some sub-areas in more detail

- Human-computer interaction
- Context-awareness and adaptation
- Distributed computing
- Software
- "Omni"

Human-computer interaction 1/2

- Multimodality many interaction modes which utilize different human senses: sound input/output, visual i/o, touch i/o, etc.
- Enhancing the traditional 2D windowingbased user interfaces
- Other radical, new ways

Human-computer interaction 2/2

- Tangible interfaces using physical things to manipulate digital things. Examples:
 - Tangible object = e.g. the lamp on your desk
 - Squeeze a soft cube to activate "night mode" of your bedroom
 - Fingertip(s) tracked by laser. User needs not wear extra gear nor carry a stylus – your finger is enough (Cassinelli, Perrin, Ishikawa)

Context awareness and adaptation

- The computer "knows" where the user is and what the user is doing, and when:
 - "Traveling", "at a meeting"
 - "Waiting for the bus"
 - "Spaced out in the lobby after lunch"
- In other words, computer is aware of user's context
- The computer can use this information to behave in an intelligent way, to adapt to the user's behaviour or situation

Distributed computing 1/2

- Computers may need to communicate with each other
- For example, to exchange sensor data (door informs lights)
- Or to negotiate usage of meeting room resources
 - Resource being e.g. video projector
 - No cables, wireless access, no human intervention, automated discovery and resource reservation

Distributed computing 2/2

- User might move around to an area of different network technology, operator, coverage, etc.
 - Seamless connectivity needed
- Related things: protocols, structured data, metadata, security, etc.
- Peer-to-peer and ad-hoc networking:
 - No servers needed, no network infrastructure needed

Software 1/2

- Software exists everywhere within the area of ubiquitous computing, for example:
 - Device logic
 - Frameworks, common APIs
 - Protocol implementations, parsing, codecs, ...
 - Algorithm implementations

Software 2/2

- Logic of shutting down certain areas of the device to save battery life
- Reasoning about the user's context for better behaviour
- (Adapting) software architectures for more flexible devices
- Data mining to aid in reasoning and user behaviour analysis
- And so on!

"Omni" examples

- Privacy and security aspects
- Usage of efficient algorithms
- Device limitations
 - Battery life, memory, size, environment (e.g. underwater), ...
- Architecture and design of the devices
- Environmental aspects
 - E.g. don't deploy millions of devices with leaking super-toxic batteries

Dangers of ubiquitous computing 1/2

- Computers and computing everywhere: could we end up with "computer pollution"?
- What to do with old, aging computing devices either embedded into the environment, or otherwise found "everywhere"?
 - Easier to throw away old devices instead of upgrading them?

Dangers of ubiquitous computing 2/2

- Danger of ubiquitous surveillance: the "Big Brother -society"
 - Your house watches your every move
- Danger of (even more) ubiquitous advertising: the "spam-society"
- There's no doubt more danger scenarios...

Art or science? Or both? 1/2

- Artificial noise-sensitive flowers in meeting rooms. Too much noise makes the flowers wither.
- Tag any object (using object's weight) and use it to invoke actions in the computer.
 E.g. frisbee bound to open folder of holiday photos
 - "Users displayed more action during computing, reaching across desks and crossing rooms."

Art or science? Or both? 2/2

 "The You're In Control system uses computation to enhance the act of urination. Sensors in the back of a urinal detect the position of impact of a stream of urine, enabling the user to play interactive games on a screen mounted above the urinal."

Build tools for humans 1/2

- As an umbrella term, "ubiquitous computing" covers quite much from different fields of research, thus
- Weiser's vision requires a multidisciplinary approach, which means also that...

Build tools for humans 2/2

- ...technical and non-technical disciplines should both be included in the research, which means to
- not build "toys for nerds" nor "art installations" but rather
- to build tools for humans.

Thank you!

"Our computers should be like our childhood: an invisible foundation that is quickly forgotten but always with us, and effortlessly used throughout our lives."

(Weiser)